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The viscosity and self-diffusion constant of particle-based mesoscale hydrodynamic methods, multiparticle
collision dynamics �MPC�, and dissipative particle dynamics, are investigated, both with and without angular-
momentum conservation. Analytical results are derived for fluids with an ideal-gas equation of state and a
finite-time-step dynamics, and compared with simulation data. In particular, the viscosity is derived in a
general form for all variants of the MPC method. In general, very good agreement between theory and
simulations is obtained.
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I. INTRODUCTION

Soft matter systems such as polymer solutions, colloidal
suspensions, membranes, and microemulsions exhibit many
interesting dynamical behaviors, where hydrodynamic flow
plays an important role, as do thermal fluctuations. The char-
acteristic time and length scales of soft-matter systems are in
the range from nanoseconds to seconds and from nano-to
micrometers, respectively, and are thus typically much larger
than the atomistic scales. Mesoscale simulation techniques
are therefore necessary to simulate these systems for suffi-
ciently large system sizes with reasonable computational ef-
fort. Several mesoscale techniques for the simulation of the
flow of complex fluids accompanied by thermal fluctuations
have been developed in the last decades, such as direct simu-
lation Monte Carlo �DSMC� �1,2�, the lattice Boltzmann
method �3,4�, dissipative particle dynamics �DPD� �5–21�,
and multiparticle collision dynamics �MPC� �22–44�.
DSMC, DPD, and MPC are off-lattice hydrodynamics meth-
ods and share many properties. DPD and MPC have been
applied to various soft-matter systems such as colloids
�15,31–33�, polymers �4,6,16,17,34–36�, and surfactants
�18,19,37–40�.

The key features to distinguish DPD and MPC are the
application of a Langevin thermostat to the relative velocities
of particle pairs or multiparticle collisions, and whether or
not to employ collision cells. To understand and elucidate the
relation between DPD and MPC, two intermediate methods
have been proposed in Ref. �20�, which are DPD with a
multibody thermostat �DPD-MT� and MPC-Langevin dy-
namics �MPC-LD�. The standard MPC algorithm does not
conserve angular momentum. However, an angular-
momentum-conserving version of MPC has also been pro-
posed in Ref. �20�. We denote the versions of a simulation
method with or without angular-momentum conservation by
an extension “+a” or “−a,” respectively. The importance of
angular-momentum conservation in MPC fluids has been
studied in Ref. �43�. In the absence of angular-momentum
conservation, an additional torque appears which depends

linearly on the vorticity, whereas the velocity field is unaf-
fected. Therefore it is essential to employ +a techniques to
simulate systems such as rotating colloids and binary fluids
with different viscosities.

In this paper, we investigate the viscosity � and self-
diffusion constant D of MPC and DPD methods. The trans-
port coefficients of −a versions of MPC were previously de-
rived analytically, and show good agreement with numerical
results �20,26–30�. We derive here analytically the viscosity
and diffusion constant of all +a versions of MPC.

The transport coefficients of original version of DPD were
derived analytically for systems with an ideal-gas equation
of state in the small-time-step limit �12� and with finite time
step �21�, and phenomenologically for soft-repulsive interac-
tions �21�. Here, we investigate the transport coefficients of
DPD-a and DPD-MT for the ideal-gas equation of state with
finite time step. The viscosity and diffusion constant are also
determined from simulations of simple shear flow with Lees-
Edwards boundary conditions and of the mean square dis-
placement of a particle, respectively.

The outline of this paper is as follows. In Sec. II, we
describe several versions of MPC, both with and without
angular momentum conservation, and calculate their trans-
port coefficients analytically and numerically. Transport co-
efficients of several versions of DPD are calculated in Sec.
III. In Sec. IV, we discuss the upper limits of the local shear
rate for which thermostats in MPC and DPD are capable to
provide local-equilibrium condition.

II. MULTIPARTICLE COLLISION DYNAMICS (MPC)

A. Simulation method

1. MPC without angular-momentum conservation

MPC is a modification of DSMC to include multiparticle
collisions, in order to make the algorithm more efficient in its
application �22�. A fluid is described by pointlike particles of
mass m. The MPC algorithm consists of alternating stream-
ing and collision steps. In the streaming step, the particles
move ballistically,

ri�t + �t� = ri�t� + vi�t , �1�

where �t is the time interval between collisions. In the col-
lision step, the particles are sorted into cubic cells of lattice
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constant lc. The collision procedure is different for each ver-
sion of MPC. For MPC-a, it is generally given by

vi
new = vc

G + ��vi,c� , �2�

where vc
G is the velocity of the center of mass of all particles

in the box, and vi,c=vi−vc
G. The collision operator ��vi,c�

stochastically changes the relative velocity vi,c, with
�i�cell��vi,c�=0 to keep the translational momentum con-
stant. This stochastic process is independent for each cell and
each time step, and the collision operator ��vi,c� depends on
whether a particle is inside a cell, but not on its position ri
within the cell. To guarantee isotropy, the operator must be
symmetric on average, with �v���v���= �1−A��v�

2����,
where the subscripts � ,�� �x ,y ,z	 indicate the spatial com-
ponents. The constants A and B=1− ���v����v��� / �v�v��
are characteristic quantities of each version �see Table I�,
which play an essential role in determining the transport co-
efficients. The operator ��vi,c� conserves the total kinetic
energy in each cell �local microcanonical ensemble� or is
coupled to a thermostat �local canonical ensemble�. The col-
lision cells are randomly shifted before each collision step to
ensure Galilean invariance �23�.

The operator ��v� of the original version of MPC is the
rotation operator. It is represented by a matrix �R�v� which
rotates velocities by an angle �. The rotation axis is chosen
randomly for each cell, which requires one integer or two
real random numbers in two-�2D� or three-dimensional �3D�
space, respectively. In two dimensions, the axis is the �z
direction �out of plane�, i.e., the rotation is clockwise or an-
ticlockwise with the angle � �see Fig. 1�. This original ver-
sion of MPC is typically denoted MPC or stochastic rotation
dynamics �SRD�. We denote it MPC-SR-a in this paper, in
order to distinguish this particular version clearly from the
whole family of MPC techniques. In MPC-SR-a, the energy
in each cell is conserved. Under flow conditions, the tem-
perature can be controlled by an additional rescaling of the
relative velocities vi,c→vi,c


d�N−Ncell�kBT /m�ivi,c
2 , where d

is the spatial dimension, N is the total number of particles,
and Ncell is the number of cells occupied by particles. This
corresponds to a velocity-scaling version of the profile-
unbiased thermostat �PUT� �45�, where cells are introduced

to thermostat local velocities relative to the center-of-mass
velocity of each cell. The number d�N−Ncell� of the degrees
of freedom should be sufficiently large for the central-limit
theorem to apply. This usually implies that the number of
cells included in the calculation of the rescaling factor is
large. When the velocity rescaling is performed on the level
of single collision cells, the Monte Carlo scheme proposed in
Ref. �33� should be employed.

In the random angle version of MPC �denoted
MPC-RA-a� �25�, the same matrix �R�v� is employed, but
the rotational angle � is also selected stochastically varied in
the interval 0	�
�0. In MPC-RA-a, one or three real ran-
dom numbers are required for each cell in two or three di-
mensions, respectively.

In the Andersen-thermostat �46,47� version of MPC, de-
noted MPC-AT �20,25�, the operator completely renews the
relative velocities in the cell, ��v�=vi

ran−� j�cellv j
ran /Nc,

where Nc is the number of particles in a cell. A velocity vi
ran

is chosen from a Maxwell-Boltzmann distribution. Thus, in
MPC-AT-a, the velocities of particles are updated by

vi
new = vc

G + vi
ran − �

j�cell

v j
ran

Nc
. �3�

Instead of the energy, the temperature is constant in MPC-
AT.

In the Langevin version of MPC �MPC-LD-a� �20�, the
Langevin thermostat is applied to the relative velocities in a
collision cell. The particle motion is given by

m
dvi

dt
= −

�U

�ri
− �vi,c + 
���i�t� − �

j�cell

� j�t�
Nc
� . �4�

In order to satisfy the fluctuation-dissipation theorem, the
Gaussian white noise �i�t� has to have the average ��i,��t��
=0 and the variance ��i,��t�� j,��t���=2kBT�ij�����t− t��,
where � ,�� �x ,y ,z	 and kBT is the thermal energy. We con-
sider in this paper only fluids with an ideal-gas equation
state, i.e., U0 in Eq. �4�. The finite time-step version of
MPC-LD-a is given by the leapfrog algorithm,

ri�tn+1/2� = ri�tn−1/2� + vi,n�t , �5�

TABLE I. Correlation factors A=1− �v���v��� / �v�
2� and B=1

− ���v����v��� / �v�v�� of various MPC methods, where � ,�
� �x ,y ,z	 and ���.

A B

MPC-SR 2

d
�1−cos ��

1−cos 2� �d=2�

2

5
�2−cos �−cos 2��

�d=3�

MPC-RA 2

d
�1−

sin �0

�0
� 1−

sin 2�0

2�0

�d=2�

2

5
�2−

sin �0

�0
−

sin 2�0

2�0
�

�d=3�

MPC-AT 1 1

MPC-LD ��t /m

1+��t /2m

2��t /m

�1+��t /2m�2

-a
-a

-a
old

old

old

+a

+a

+a+a-vs

+a-vs

+a-vs

DR

DR

DR

FIG. 1. �Color online� Schematic representation of the collision
operation for MPC-SR�a and MPC-DR in two-dimensional �2D�
space in the co-moving reference frame �with �vi=0� at Nc=3 and
�= /2. Circles represent the positions of particles ��� and the
center of mass ���. “old” indicates the velocities before the colli-
sion, “�a” and “DR” represent the velocities after the collision for
MPC-SR�a and MPC-DR, respectively, and “+a-vs” indicates the
velocities after the “+a” collision without velocity rescaling.

HIROSHI NOGUCHI AND GERHARD GOMPPER PHYSICAL REVIEW E 78, 016706 �2008�

016706-2



vi�tn+1� = vc
G + aldvi,c�tn� + bld��i,n − �

j�cell

� j,n

Nc
� ,

with ald =
1 − ��t/2m

1 + ��t/2m
, bld =


��t/m
1 + ��t/2m

, �6�

where ��i,n,��=0 and ��i,n,�� j,n�,��=2kBT�ij����nn�. Thus, the
collision operator is ��vi,c�=aldvi,c+bld��i,n−�� j,n /Nc	.
MPC-LD with ��t /2m=1 coincides with MPC-AT.

MPC-AT and MPC-LD can suppress temperature gradient
better than MPC-SR and MPC-RA, since their thermostats
are local and more efficient. In MPC-AT and MPC-LD, the
correlations have a simple relation, �1−B�= �1−A�2. How-
ever, MPC-SR and MPC-RA have additional correlations be-
tween x and y components, i.e., �1−B�� �1−A�2 as shown in
Table I.

2. MPC with angular-momentum conservation

Collisions described by Eq. �2� conserve translational mo-
mentum, but do not conserve angular momentum. However,
angular-momentum conservation can be imposed by an ad-
ditional constraint. This modification is straightforward for
the MPC versions with an intrinsic thermostat �such as
MPC-AT and MPC-LD�. In this case, the collision is given
by

vi
new = vc

G + ��vi,c� + m�−1

� �
j�cell

�r j,c � �v j,c − ��v j,c��	 � ri,c, �7�

where � is the moment-of-inertia tensor of the particles in
the cell. The relative position is ri,c=ri−rc

G where rc
G is the

center of mass of the particles in the cell. The angular mo-
mentum of the cell after the collision, ��c=m�r j,c�v j,c, is
the same as before the collision. The subtraction of either
position or velocity of the center of mass can be omitted in
the last term of Eq. �7�, since �r j,c�v j,c=�r j �v j,c=�r j,c
�v j.

For MPC-AT+a or MPC-LD+a, the terms

fAT+a = m�−1 �
j�cell

�r j,c � �v j − v j
ran�	 � ri,c, �8�

fLD+a = m�−1 �
j�cell

ˆr j,c � ��v j − 
�� j�t�	‰ � ri,c �9�

are added to Eqs. �3� and �4�, respectively �20�.
When Eq. �7� is applied to the operator of MPC-SR or

MPC-RA, the kinetic energy is not conserved. Thus the col-
lision process has to be modified by combining it with ve-
locity rescaling to conserve the energy,

vi
new = vc

G + m�−1 �
j�cell

�r j,c � v j,c� � ri,c + ����vi,c�

− m�−1 �
j�cell

�r j,c � ��v j,c�� � ri,c� , �10�

where �= �� j�cell�u j
old�2	 / �� j�cell�u j

��2	. Here, the relative
velocities before and after the collision, u j

old and u j
�, respec-

tively, are given by ui=vi,c−m�−1� j�cell�r j,c�v j,c��ri,c,
where the total translational and angular velocities of the cell
are subtracted. This collision is shown schematically in Fig.
1. Under the molecular-chaos assumption, this yields the
ideal-gas equation of state. However, the molecular-chaos
assumption is not perfectly valid. Thus the radial distribution
function g�r� of MPC-SR+a exhibits deviations from the
uniform distribution of the ideal gas, in particular for small n
or small �t �see Fig. 2�. Note that small time steps �t are
essential to model fluids with high Schmidt numbers and low
Reynolds numbers �34�. If the velocity rescaling for the en-
ergy conservation is done not for each cell but for the sum of
many cells, this deviation becomes larger. A similar deviation
is seen in DPD simulations �8� with the modified velocity-
Verlet algorithm �6�. These deviations arise due to the lack of
time-reversal symmetry. The collision operators of
MPC-AT+a and MPC-LD+a and all −a versions of MPC
have time-reversal symmetry and give the correct uniform
g�r�—see, e.g., the data of MPC-AT+a in Fig. 2. Thus
MPC-SR+a should not be used for small n or small �t. We
recommend to check g�r� for any new MPC operator.

An alternative modification of MPC-SR for two-
dimensional fluids to conserve angular momentum has been
proposed recently by Ryder �48� �see also Ref. �44��. We
denote this algorithm MPC-DR �deterministic rotation�. In
MPC-DR, a rotational angle is chosen deterministically to
keep the total angular momentum of particles in a collision
cell constant by the requirement W�1−cos���	+Q sin���=0,
where W=� j�cellr j,c�v j,c and Q=� j�cellr j,c ·v j,c. This im-
plies

cos��� =
W2 − Q2

W2 + Q2 and sin��� = −
2WQ

W2 + Q2 . �11�

The velocities after a collision in MPC-DR are different from
those in MPC-SR+a, since the +a procedure �from −a to
+a-vs in Fig. 1� does not change the radial velocities.
MPC-DR gives the correct uniform g�r� and is less time
consuming than other +a versions of MPC. We also checked
that MPC-DR yields the correct constant angular velocities
for phase-separated binary fluids with different viscosities in
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*

FIG. 2. �Color online� Radial distribution function g�r� of
MPC-SR+a �with n=1, �t*=1 and n=10, �t*=0.1� and
MPC-AT+a �with n=1, �t*=0.1� in two dimensions. The inset
shows the n dependence of g�r� of MPC-SR+a at �t*=0.1. Error
bars are shown at several data points.
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a circular Couette flow, as described in Sec. IV C of Ref.
�43�. However, this algorithm cannot be generalized to three-
dimensional systems.

B. Transport coefficients

1. Stress tensor

Angular-momentum conservation implies that the stress
tensor ��� for an isotropic Newtonian fluid is symmetric,
i.e., ���=��� �49�. In contrast, MPC−a fluids have an asym-
metric stress tensor

��� = ��� · v���� + �̄� �v�

�x�

+
�v�

�x�
� + �̌� �v�

�x�

−
�v�

�x�
� ,

�12�

because of the lack of angular-momentum conservation
�27,29,43�, where � ,�� �x ,y ,z	 and � is the second viscos-
ity coefficient. �̄ and �̌ are the symmetric and antisymmetric
components of the viscosity, respectively. The last term in
Eq. �12� implies that the stress depends linearly on the vor-
ticity ��v, and does not conserve angular momentum. Thus
this term vanishes �i.e., �̌=0� in angular-momentum con-
serving systems.

The evolution of the velocity field v�r� is determined by

�
Dv

Dt
= − �P + �� + �̄ − �� � �� · v� + ��̄ + �̌��2v , �13�

where D /Dt is Lagrange’s derivative and P is the pressure
field. When a fluid is incompressible, Eq. �13� is the normal
Navier-Stokes equation with viscosity �= �̄+ �̌. This is con-
sistent with the usual definition of the shear viscosity �
=�xy / �̇ in simple shear flow with velocity field v= �̇yex,
where ex is the unit vector along the x direction. Since both
the equations of continuity and of velocity evolution are of
the same forms in systems with and without angular-
momentum conservation, the absence of angular-momentum
conservation does not affect the velocity field of a fluid when
the boundary conditions are given by velocities. However, it
generates an additional torque, as described in detail in Ref.
�43�. In this paper, we discuss the stress tensor of various
MPC and DPD methods.

2. MPC without angular-momentum conservation

The shear viscosity is calculated from �xy / �̇=�= �̄+ �̌ in
simple shear flow with v= �̇yex. The viscosity of MPC fluids
consists of two contributions, �=�kin+�col, where the kinetic
viscosity �kin and the collisional viscosity �col result from the
momentum transfer due to particle displacements and colli-
sions, respectively. The derivation of the viscosity for
MPC-SR−a described in Refs. �26–30� can be employed
directly for other −a versions of MPC, since the differences
appear only in the factors A and B listed in Table I.

The kinetic stress �xy
kin=�kin�̇ is the momentum flux due to

particles crossing a xz plane at y=y0=0. The stress due to
streaming in the time interval �t , t+�t� is written as

�xy
kin =

m

S�t� �
yi�t��0,vi,y
−yi�t�/�t

vi,x − �
yi�t�
0,vi,y�−yi�t�/�t

vi,x� ,

�14�

where S is the surface area of the considered plane. The
average over equivalent xz planes yields

�xy
kin = − mn�vxvy�t+�t/2 = −

m

V
�

i

�vi,xvi,y� , �15�

where n= �Nc� is the average number of particles per cell,
and V is the volume of the considered region V, with ri�V;
here the middle position ri�t+�t /2�=ri�t�+vi�t /2 during
streaming is employed to determine whether the ith particle
is inside the region V. The expression �15� is symmetric in x
and y. The symmetry of the kinetic part of the stress tensor,
i.e., �yx

kin=�xy
kin, implies �kin=0 for all versions of MPC and

DPD. Numerically, �xy
kin and �kin can be calculated from Eqs.

�14� or �15�. The velocity distribution is shifted by particle
streaming so that

�vxvy�t,t+�t =� dvvxvyPv�v � �̇vy�tex/2�

= �vxvy�t+�t/2 � �vy
2��̇�t/2, �16�

where Pv�v� is the velocity probability distribution. The ve-
locity distribution is modified by the MPC collisions so that
�vx

newvy
new�= �1−cm��vxvy�, where the factor cm is determined

later. The self-consistency condition of a stationary shear
flow is �vxvy�t= �vxvy�t+�t= �1−cm���vxvy�t− �̇�t�vy

2��. The ki-
netic viscosity �kin is then given by �26�

�kin =
nkBT�t

lc
d � 1

cm
−

1

2
� . �17�

Equation �17� holds for all �a versions of MPC and DPD.
The velocity correlations for MPC−a are calculated by

using Eq. �2�,

�vi,x
newvi,y

new� = � 1

Nc
2 +

2

Nc
�1 −

1

Nc
��1 − A� + �1 −

1

Nc
�2

�1 − B��
��vi,xvi,y� +

2A − B

Nc
2 �

j�i

�v j,xv j,y�

= �1 − B�1 −
1

Nc
���vi,xvi,y� , �18�

where molecular chaos is assumed, i.e., �vi,xvi,y�= �v j,xv j,y�
and �vi,xv j,y�=0 for i� j. Thus the correlation factor for a cell
occupied by Nc particles is c�Nc�=B�1−1 /Nc�. An MPC
fluid is thermodynamically an ideal gas, so that the cell oc-
cupation number Nc fluctuates with the Poisson distribution,
P�Nc�=e−nnNc /Nc! with n= �Nc�. Thus the average correla-
tion is given by cm=�k=1

� c�k�P�k�k /n=B�n−1+e−n� /n. The
kinetic viscosity of MPC−a is then given by

�kin =
nkBT�t

lc
d � n/B

n − 1 + e−n −
1

2
� . �19�

HIROSHI NOGUCHI AND GERHARD GOMPPER PHYSICAL REVIEW E 78, 016706 �2008�

016706-4



The collisional stress �xy
col=�col�̇ is the momentum flux

due to MPC collisions in cells crossing a plane at y=y0. It is
given by �26�

�xy
col = −

m

lc
d−1�t

�
y0
yi,i�cell

�vi,x
new − vi,x� . �20�

When Eq. �20� is averaged over the planes crossing the cell,
ycc− lc /2
y0
ycc+ lc /2, the stress reads

�xy
col = −

m

lc
d−1�t

�
i�cell

� yi,cc

lc
+

1

2
��vi,x

new − vi,x� , �21�

where yi,cc=yi−ycc and ycc is the y component of the center-
of-cell position rcc. Numerically, �xy

col and �col can be calcu-
lated from either Eqs. �20� or �21�. The mean velocity differ-
ence is �vi,x

new−vi,x�=−�1− 1
Nc

�A�̇yi,cc, because �vc
G�=vi /Nc,

where yj is averaged over −lc /2
yj 
 lc /2 for j� i at ycc
=0. Then the collisional viscosity �col of MPC−a is given by

�col =
Am

lc
d�t
� �

Nc=1

�

�Nc − 1�P�Nc���
−lc/2

lc/2

dy� y

lc
+

1

2
�y

=
Am�n − 1 + e−n�

12lc
d−2�t

. �22�

The vorticity viscosity �̌col�̇=�xy
col−�yx

col is proportional to the
angular-momentum transfer with respect to the origin �xcc
− lc /2,ycc− lc /2�; see Eq. �21�. Thus the vorticity viscosity of
MPC+a vanishes, �̌col=0, because of angular-momentum
conservation. For MPC−a, the molecular-chaos assumption
gives �yx

col=0, because �vy
new�x��= �vy�x��=0. Thus the vis-

cosities are �̌= �̄col=�col /2 �27,43�. This relation holds for
all −a versions of MPC and DPD described in this paper.

As an extension of this approach, the angular-momentum
constraint can be applied only partially, by employing alter-
natively the MPC-collision algorithms which conserve
�given by Eq. �7�� and do not conserve �determined by the
difference of the right-hand sides of Eqs. �2� and �7�� angular
momentum. In this way, the viscosity ratio �̌ /� can be var-
ied continuously between 0 and approximately 1.

Next, we derive the self-diffusion constant D of MPC
−a. Under the molecular-chaos assumption, the velocity cor-
relation function decays exponentially, �vi,x�k�t�vi,x�0��
= �1−sm�kkBT /m with 1−sm= �vi,x

newvi,x� / �vi,x
2 �. The diffusion

constant is given by �28�

D =
�t

2 ��vi,x�0�2� + 2�
k=1

�

�vi,x�k�t�vi,x�0���
=

kBT�t

m
� 1

sm
−

1

2
� . �23�

In MPC−a, the correlation factor is sm=�k=1
� s�k�P�k�k /n

=A�n−1+e−n� /n with s�Nc�=A�1−1 /Nc�; this implies

D =
kBT�t

m
� n/A

n − 1 + e−n −
1

2
� . �24�

However, the velocity autocorrelation function
�vx�k�t�vx�0�� for small mean free path l�=�t
kBT /m0 has a

long-time tail due to hydrodynamic backflow �28,32,34�.
This leads to an additional hydrodynamic contribution to the
diffusion constant D, which thereby becomes larger than pre-
dicted by Eq. �25�.

3. MPC with angular-momentum conservation

To derive expressions for the self-diffusion constant and
viscosity of MPC+a, we employ Eqs. �17�, �21�, and �23�,
which remain valid with angular-momentum conservation.
However, the correlation factors sm and cm of MPC+a are
different from those of MPC−a. First, we consider the limit
of large n, where sm=s�n� and cm=c�n�, and derive the cor-
rections for small n subsequently. The velocity correlation is
calculated from � j�r j,c�v j,c��ri,c=� j�ri,c ·r j,c�v j
− �v j ·ri,c�r j,c with the molecular-chaos assumption. The po-
sitions of particles ri are averaged over the cell, so that ri,c

2

= �1−1 /Nc�lc
2d /12 and �= �Nc−1�mlc

2I /6 where I is the
identity matrix. Angular-momentum conservation implies ad-
ditional correlations, which result in

s�Nc� = A�1 −
1

Nc
� −

Ad

2Nc
�1 − �x̂i,cc

2 �� = A�1 −
d + 1

2Nc
� ,

�25�

where x̂i,cc is the x component of unit vector r̂i,cc=ri,cc /ri,cc
and �x̂i,cc

2�=1 /d. The diffusion constant of MPC+a for large
n is thus found to be

D =
kBT�t

m
� n/A

n − �d + 1�/2
−

1

2
� . �26�

For the calculation of the kinetic viscosity, we obtain the
vxvy correlation factor

c�Nc� = B�1 −
3d + 2

4Nc
� +

Ad

2Nc
+ O�Nc

−2� . �27�

The kinetic viscosity �kin for large n is then given by Eqs.
�17� and �27� with cm=c�n�. For MPC-AT+a and
MPC-LD+a, this implies for large n that

�kin
AT+a =

nkBT�t

lc
d � n

n − �d + 2�/4
−

1

2
� , �28�

�kin
LD+a =

nkBT

lc
d � mn�1 + ��t/2m�2/�

2n − d − 1 + d��t/4m
−

�t

2
� . �29�

Note that � and D of MPC-LD�a have a different depen-
dence on the time step �t than other MPC algorithms, since
their correlation factors A and B depend on �t �see Table I�.

The mean velocity difference for MPC+a is given by

�vi,x
new − vi,x� = − �1 −

1

Nc
�A��̇ − ����yi,cc. �30�

The z component of the velocity is pre-averaged, the angular
velocity is in the vorticity direction, �=�ez, and �v j�
= �̇yj,ccex, so that

��� = ��
j
r j,c � v j,c

�
j
xj,c

2 + yj,c
2 � ,
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��� =
yi,cc

2 + �Nc − 1�lc
2/12

yi,cc
2 + �2Nc − 1�lc

2/12
�̇ , �31�

where the numerator and denominator are averaged over
xi,cc, xj,cc, and yj,cc independently. When ��� is also pre-
averaged over yi,cc, ���= �̇ /2 is obtained. However, Eq. �21�,
together with Eq. �30� contains an integral with yi,cc

2 , which
yields an additional correction term of O�Nc

−1�,

�
−lc/2

lc/2 ���yi,cc
2

�̇lc
3 dyi,cc =

1

24
�1 +

2

5Nc
� + O�Nc

−2� . �32�

Then, the collisional viscosity �col of MPC+a for large n is
given by

�col =
Am�n − 7/5�

24lc
d−2�t

. �33�

Next, we derive the correction terms for small n. For Nc
=1 or 2, Eqs. �25� and �27� do not give the correct correla-
tion factors s�Nc� and c�Nc� for MPC+a—unlike for MPC
−a. First, there is no velocity transfer for Nc=1, i.e., s�1�
=c�1�=0. Second, in the energy-conserving versions
�MPC-SR+a and MPC-RA+a�, all dNc degrees of freedom
are determined for Nc=2 by the conservation of energy �one
degree of freedom�, and translational �d degrees� and angular
�d−1 degrees� momentum, so that s�2�=c�2�=0. In the ver-
sions with an intrinsic thermostat �MPC-AT+a and
MPC-LD+a�, one degree of freedom remains for the veloc-
ity transfer for Nc=2, so that s�2�=A /2d and c�2�= �A
+B /d� / �d+2�. Thus sm=�k=3

� s�k�P�k�k /n for energy-
conserving versions of MPC, and sm= P�2�A /dn
+�k=3

� s�k�P�k�k /n for intrinsic-thermostat versions of MPC.
For MPC-SR+a and MPC-RA+a, the diffusion constant D,
and the viscosities �kin and �col are given by Eqs. �23� and
�17� with

sm = A�1 −
d + 1

2n
+

e−n

2
� �d − 3�n

2
+ d − 1 +

d + 1

n
�� ,

cm = B�1 − e−n�1 + n�	

+ �Ad −
B�3d + 2�

2
�1 − e−n�1 + n + n2/2�

2n
,

�col =
Am

24lc
d−2�t

�n −
7

5
+ e−n�7

5
+

2n

5
−

3n2

10
�� . �34�

For MPC-AT+a and MPC-LD+a, the diffusion constant D
and the viscosity contributions �kin and �col are given by
Eqs. �23� and �17� with

sm = A�1 −
d + 1

2n
+

e−n

2
� �d − 1��d − 2�n

2d
+ d − 1 +

d + 1

n
�� ,

�35�

cm = B�1 − e−n�1 + n�	 + �A +
B

d
� ne−n

d + 2

+ �Ad −
B�3d + 2�

2
�1 − e−n�1 + n + n2/2�

2n
, �36�

�col =
Am

24lc
d−2�t

� �n −
7

5
+ e−n�7

5
+

2n

5
+ �1

d
−

3

10
�n2�� .

�37�

For MPC-DR, the rotation angle � is uniformly distrib-
uted in −	�
 under the molecular-chaos assumption.
Thus the transport coefficients of MPC-DR coincide with
those of MPC-RA+a at �0=. Thus the diffusion constant
D, and the viscosities �kin and �col of MPC-DR are given by
Eqs. �23�, �17�, and �34� with A=B=1. Here, the term cm can
be written in a simpler form, cm= �n−1+e−n�1−n2 /2�	 /n.

C. Numerical results

Figures 3–6 show the viscosities �kin and �col for five
MPC methods with or without the angular-momentum con-
servation. The results are displayed in form of dimensionless
quantities with length and time units lc and �0= lc


m /kBT,
respectively. The main parameters which control the proper-
ties of MPC fluids, the time step and friction constant, have
the dimensionless form �t*=�t /�0 and �*=��0 /m. Simi-
larly, the viscosity and diffusion constant of a particle are
shown in units of �0=
mkBT / lc

d−1 and D0= lc

kBT /m, re-

spectively. The error bars of the simulation results are esti-
mated from three independent runs.

Analytical results are calculated from Eqs. �23� and �17�
together with Eq. �34�, or from Eqs. �35�–�37�, and show

0
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0 0.5 1

3D

(a) n=5

kinηcolη

η
/ η

0

(b) n=1

AT-a

AT+a

∆t *

η
/ η

0

2D

AT-a

AT+a

FIG. 3. �Color online� Dependence of the viscosity in
MPC-AT�a on �t* in two-or three-dimensional space for �a� n
=5 and �b� n=1. Symbols represent the numerical data of
MPC-AT+a in two dimensions ��, �� or three dimensions ��, ��
and MPC-AT−a in two dimensions ��, �� or three dimensions
��, ��, respectively. Solid and dashed lines represent analytical
results for MPC-AT+a and MPC-AT−a, respectively. Error bars
are smaller than the size of symbols.
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generally good agreement with the numerical data, in par-
ticular for �t�1 and large n. For smaller time step �t*
=0.1, the most significant deviations between numerical and
analytical results are found for the kinetic viscosity �kin, both
for MPC-AT−a and MPC-AT+a, as shown in Fig. 4�a�.
Similar deviations between analytical and numerical results
for �kin have been observed for DPD in Refs. �13,21�. They
have been explained by correlation effects between collisions
in MPC-SR−a �30� and DPD �13�. At �t*=0.1, a pair of
particles can collide sequentially several times; in particular
for n�1, pairwise collision occur frequently without involv-
ing any other particles. Thus the molecular-chaos assumption
is weakly violated. There are also deviations between ana-
lytical and numerical results for the viscosity difference
�̄col− �̌col of MPC−a at small �t or small n �see Fig. 7�. This
is also caused by a violation of the molecular-chaos assump-
tion.

Angular-momentum conservation does not affect the ki-
netic viscosity �kin of MPC-AT in two dimensions at large n,
compare Eqs. �19� and �28�. Numerical results are shown in
Figs. 3�a� and 4�a�. However, the correction term in Eq. �36�
predicts a small difference of �kin for MPC-AT−a and
MPC-AT+a for small n�1; see Figs. 3�b� and 4�a�. The
viscosities �kin and �col of MPC-AT−a and �col of

MPC-AT+a for large n show no dependence on the space
dimension d �except for the scale factor lc

−d� therefore the
corresponding lines in Fig. 3 coincide.

In two dimensions, MPC-SR with �= /2 and MPC-RA
with �0= are characterized by A=1, and by B=2 and B
=1, respectively. Thus they have the same collisional viscos-
ity �col for both their −a and +a version, but a different
kinetic viscosity �kin; see Fig. 6. Although MPC-DR has the
same viscosity of MPC-RA+a theoretically, the numerical
data of MPC-DR shown in Fig. 3 display a slightly larger
deviation from the theoretical results for �col and a smaller
deviation for �kin than the data of MPC-RA+a.

Equation �17�, together with Eq. �36�, predicts a minimum
of �kin around n=1, as shown in Figs. 4�c� and 5�b�. How-
ever, this minimum is not seen in numerical data and could
be caused by the negligence of higher-order terms in Eq.
�27�. We therefore investigate the dependence of the next-
order term h /Nc

2, where h is a free parameter. The average is
estimated by hm=�k=3

� P�k�h /kn��1−e−n�1+n+n2+n3 /6
−n4 /72�	h /n2, which yields the asymptotic dependence hm
=hn2 /18 for small n and hm=h /n2 for n→�. The correction
term hm is then added to Eq. �36� with h as a fit parameter.
Figure 4�c� shows that this correction term with h=−0.6 in
two dimensions and h=−1 in three dimensions removes the
minimum and gives better agreement with the numerical data
of MPC-AT+a.

Figure 8 shows the self-diffusion constant D of
MPC-AT�a. The +a fluid displays faster diffusion than the
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FIG. 4. �Color online� Dependence in MPC-AT�a of the vis-
cosities on the particle number per cell, n. �a�,�c� �kin and �b� �col.
Symbols represent the numerical data of MPC-AT+a ��, �� and
MPC-AT−a ��, �� for �t*=0.1 and �t*=1 in two dimensions,
respectively, and the numerical data of MPC-AT+a at �t*=1 ���
in two dimensions. In �a�,�b�, the viscosity is rescaled by �t* and
1 /�t*, respectively, in order to facilitate a presentation of data for
different �t* on the same scale. Solid and dashed lines in �a� and
�b� represent analytical results for MPC-AT+a and MPC-AT−a,
respectively. Solid and dashed lines in �c� represent analytical re-
sults with or without the correction term hm, respectively. Error bars
are smaller than the size of symbols.
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−a fluid. The diffusion constant D is numerically calculated
from the mean square displacement of a particle, ��ri�t�
−ri�0�	2�=2dDt, in a cubic simulation box with side length
L=20lc. Deviations from the analytical results calculated
with the molecular-chaos assumption are seen for small �t*.

III. DISSIPATIVE PARTICLE DYNAMICS (DPD)

A. Simulation method

The DPD thermostat is a modified Langevin thermostat,
where friction and noise forces are applied to the relative

velocities of pairs of neighboring particles �5–7�. The equa-
tion of motion for the ith particle with mass m is given by

m
dvi

dt
= −

�U

�ri
+ �

j�i

�− wijvij · r̂ij + 
wij�ij�t�	r̂ij , �38�

where vij =vi−v j, rij =ri−r j, and r̂ij =rij /rij, with weight wij
=w�rij�. The Gaussian white noise �ij�t� obeys the
fluctuation-dissipation theorem, with ��ij�t��=0 and
��ij�t��i�j��t���=2kBT��ii�� j j�+�ij��ij����t− t��. This thermo-
stat is applied only in the direction r̂ij to conserve the angular
momentum. We denote this original method here DPD+a.

In DPD, a linear weight function wij =w1�rij�
=��1−rij /rcut� or quadratic function w2�rij�=��1−rij /rcut�2

is typically employed, which vanishes beyond the cutoff dis-
tance rij =rcut. Furthermore, DPD is usually combined with a
soft repulsive potential U; however, we only consider the
ideal-gas equation state �with potential U=0� in this paper.

The DPD equation �38� is discretized by the Shardlow’s
S1 splitting algorithm �9�, where each thermostat of the ij
pair is integrated separately,

vi
new = vi + �− adp�rij�vij · r̂ij + bdp�rij��ij,n	r̂ij ,

v j
new = v j − �− adp�rij�vij · r̂ij + bdp�rij��ij,n	r̂ij , �39�

with

adp�rij� =
wij�t/m

1 + wij�t/m
, bdp�rij� =


wij�t/m
1 + wij�t/m

. �40�

The discretized Gaussian noise �ij,n is determined by the
variance ��ij,n�i�j�,n��=2kBT��ii�� j j�+�ij��ij���nn�. This split-
ting algorithm belongs to the class of generalized Lowe-
Anderson thermostats �10�, because the factors adp�rij� and
bdp�rij� satisfy the relation bdp=
adp�1−adp� /m �20�.

DPD can be modified to remove angular-momentum con-
servation. We denoted this technique here DPD−a. It has
been introduced in Ref. �20� to explore the similarities and
differences between DPD and MPC methods. In this case,
the equation of motion reads �20�
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m
dvi

dt
= −

�U

�ri
+ �

j�i

�− wijvij + 
wij�ij�t�	 . �41�

The splitting algorithm can also be applied to DPD−a as
vi

new=vi−adp�rij�vij +bdp�rij��ij,n.
The combination of DPD+a and DPD−a, denoted “trans-

verse DPD,” with an equation of motion determined by the
difference of the right-hand sides of Eqs. �41� and �38�, has
been suggested very recently �50�. A similar anisotropic fric-
tion has been used in the standard Langevin equation to treat
polymer entanglement implicitly in polymer melts �51� and
dilute polymer solutions �52�.

The DPD thermostat can be generalized into a multibody
thermostat �denoted DPD-MT−a� �20�, which is defined by
the equation of motion

m
dvi

dt
= −

�U

�ri
− wi

0�vi − vi
G� + 
wi

0�i�t�

+ �
j�i

wij��v j − v j
G� −

� j�t�

wj

0� , �42�

where wi
0=� j�iwij, and vi

G=� j�iwijv j /wi
0 is the weighted

mean velocity. The second term on the right-hand side of Eq.
�42� is the friction term between the ith particle and its
neighbors, and Nnb /2 thermostats in Eq. �41� are unified into
a single thermostat, where Nnb is the average number of the
neighbors with rij 
rcut. The third and fourth terms on the
right-hand side of Eq. �42� are needed to conserve the trans-
lational momentum.

Angular momentum can be conserved in DPD-MT, when
the thermostat for the ith particle is applied only in the di-
rection ri,G=ri−ri

G, where the weighted center of mass is
ri

G=� j�iwijr j /wi
0. The equation of motion of DPD-MT+a is

thus given by

m
dvi

dt
= −

�U

�ri
+ �− wi

0�vi − vi
G� · r̂iG + 
wi

0�i�t�	r̂iG

+ �
j�i

wij��v j − v j
G� · r̂ jG −

� j�t�

wj

0�r̂ jG. �43�

Shardlow’s S1 splitting algorithm �9� can be applied to
both DPD-MT−a and DPD-MT+a. Equation �42� of
DPD-MT−a is discretized such that each thermostat of the
i , iG pair is integrated separately,

vi
new = vi − ai

mt�vi − vi
G� + bi

mt�i,n,

v j
new = v j +

wij

wi
0 �ai

mt�vi − vi
G� − bi

mt�i,n	 . �44�

The factors ai
mt and bi

mt are given by

ai
mt =

wi
0�t/m

1 + �iwi
0�t/2m

, bi
mt =


wi
0�t/m

1 + �iwi
0�t/2m

, �45�

where �i=1+� j�iwij
2 / �wi

0�2.

B. Transport coefficients

We now derive analytical expressions for the viscosity �
and self-diffusion constant D of DPD−a and DPD-MT�a
with ideal-gas equation of state �with potential U=0�. The
corresponding derivations for DPD+a �21� can be straight-
forwardly carried over to this case.

The correlations of DPD�a result from a multitude of
pairwise collisions, so that 1−sm= �� jsij� and 1−cm
= �� jcij�. Equation �39� together with a molecular-chaos as-
sumption implies sij =1−adpx̂ij

2 , cij =1−adp�x̂ij
2 + ŷij

2 �
+4adp

2 x̂ij
2 ŷij

2 for DPD+a, and sij =1−adp, cij =1−2adp+2adp
2

for DPD−a. For an ideal gas, the number of particles k per
volume �V is given by the Poisson distribution, P�k�
=e−n�V�n�V�k /k!, so that �ck�=exp��−1+c�n�V	 for some
constant c. This implies 1−sm=exp�−1+� j�sij��.

The collisional stress �xy
col is the momentum flux due to

DPD collisions crossing a plane at y=y0. After interchange
of the order of integration, �xy

col is given by

�xy
col = −

mn2

2�t
� drij�vi,x

new − vi,x�yij , �46�

where Eq. �39� and �vij,x�= �̇yij have been used. Thus the
diffusion constant and viscosity of DPD+a are given by Eq.
�17� with �21�

D =
kBT�t

m
� 1

1 − exp�− n�adp�r��g/d	
−

1

2
� , �47�

cm = 1 − exp�n�−
2adp�r�

d
+

4adp�r�2

d�d + 2��g
� , �48�

�col =
n2

2d�d + 2�� wr2

1 + w�t/m�
g

, �49�

�w�g � g�r�w�r�dV . �50�

In the limit �t�1, our results agree with those of the
Chapman-Enskog expansion in Ref. �12�. Similarly, for
DPD−a, D, cm, and �col are found to be

D =
kBT�t

m
� 1

1 − exp�− n�adp�r��g	
−

1

2
� , �51�

cm = 1 − exp�2n�− adp�r� + adp�r�2�g	 , �52�

�col =
n2

2d
� wr2

1 + w�t/m�
g

. �53�

The only differences between the expressions for D, cm, and
�col in DPD+a and DPD−a are prefactors containing d and
d+2.

To simplify the equations of DPD-MT, the factors ai
mt and

�i are pre-averaged as

am =
n�w�g�t/m

1 + �mn�w�g�t/2m
, �m = 1 +

�w2�g

n�w�g
2 . �54�

Then D, cm, and �col of DPD-MT+a are given by
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D =
kBT�t

m
� 1

1 − exp�− �mam/d�
−

1

2
� , �55�

cm = 1 − exp�−
2am�m

d
+

2am
2 �m

2

d�d + 2�� , �56�

�col =
n�w2r2�g

d�d + 2��w�g�1 + �mn�w�g�t/2m�
. �57�

Finally, for DPD-MT−a, we find

D =
kBT�t

m
� 1

1 − exp�− �mam�
−

1

2
� , �58�

cm = 1 − exp�− 2am�m + am
2 �m

2 � , �59�

�col =
n�w2r2�g

d�w�g�1 + �mn�w�g�t/2m�
. �60�

C. Numerical results

Figure 9 shows the viscosity of various DPD fluids with
an ideal-gas equation of state and the linear weight w1�rij�.
The viscosity and time step are normalized by �0
=
mkBT /rcut

d−1 and �0=rcut

m /kBT, respectively. The dimen-

sionless time step is �t*=�t /�0, as before. There is in gen-
eral good agreement between analytical and numerical re-
sults. However, small deviations are visible. One reason for
these deviations is that the molecular-chaos assumption is
not perfectly valid �13�. In the case of DPD-MT�a, another
reason is the pre-averaging procedure used in the derivation
of the analytical expressions, which neglects some correla-
tions.

The kinetic �collisional� viscosities of DPD+a and
DPD-MT+a are larger �smaller� than those of the −a ver-
sions, since angular-momentum conservation reduces the
momentum transfer in DPD collisions. A similar behavior
has also been found for MPC�a in Sec. II.

IV. THERMOSTATING MESOSCALE FLUIDS
UNDER FLOW

In experiments, systems are usually thermostated on their
boundaries. However, in simulations, thermostats typically
act on all fluid particles in order to avoid temperature gradi-
ents. In flows, the temperature is defined under the assump-
tion of local equilibrium. In the MPC and DPD families, the
length scales which define this “local” environment are lc
and rcut, respectively. On these scales, the thermal fluctua-
tions should be separated from the macroscopic flow, and the
thermostats should act on the local kinetic energy to fix the
temperature.

The conditions on the shear rate �̇ for this local equilib-
rium to hold are obtained as follows. All of thermostats of
the MPC family are profile-unbiased thermostats �PUT� �45�.
Thus the condition for a maximum shear rate of PUT �53�
also apply to MPC. In simple shear flow with low Reynolds
number, the particle velocities are characterized by �vi�ri��
= �̇yiex and �vi�ri�2�=dkBT /m+ �̇2yi

2. In MPC, the particle
velocity vi,c relative to the center-of-mass velocity of a MPC
collision cell is employed to calculate the kinetic energy in
the local rest frame,

1

Nc − 1 �
i�cell

�vi,c
2 � =

dkBT

m
+

�̇2lc
2

12
, �61�

where the average is taken over all particles in a cell. For
�̇lc�
kBT /m, the second term in Eq. �61� is negligible, and
the thermal fluctuations and shear are well separated. On the
other hand, for �̇lc�
kBT /m, the thermostats couple with
the macroscopic flow and may modify the flow behavior.

In DPD+a, the relative velocity vij of neighboring par-
ticles is employed instead,

��vij · r̂ij�2� =
2kBT

m
+

���̇rx̂ŷ�2w�g

�w�g
. �62�

For the linear weight w1�rij� and uniform radial distribution
function g�r�, the second term in Eq. �62� is ��d+1� /
�d+2�2�d+3�	��̇rcut�2. Thus the condition for thermostats to
provide local equilibrium conditions is �̇rcut�
kBT /m.

To study the hydrodynamic behavior of complex fluids,
the parameter ranges of simulations should of course also
match physical conditions of experiments. Thus the simula-
tion parameters have to be chosen such as to adjust dimen-
sionless hydrodynamic quantities, like the Reynolds number,
the Schmidt number, and the Knudsen number.

V. SUMMARY

MPC and DPD are very versatile simulation techniques
for mesoscale hydrodynamics. By employing different types
of collision rules and thermostats, it is possible to construct a

0

5

10 (a)

kinη
colη

η
/ η

0

(b)

DPD+a

∆t *

η
/ η

0

DPD-a
MT+a

co
l

MT-a

MT+a

MT-a

0

0.5

1

0 0.5 1

FIG. 9. �Color online� Dependence of the viscosity � on �t* of
DPD�a and DPD-MT�a in three-dimensional space for nrcut

3 =3
and ��0 /m=9. Symbols represent the numerical data of DPD+a
���, DPD−a ��,��, DPD-MT+a ���, and DPD−a ���. Dashed
and solid lines represent analytical results for DPD−a and other
DPD methods, respectively. Error bars are smaller than the size of
symbols.
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variety of algorithms with different properties. One of the
important properties is whether an algorithm does or does
not conserve angular momentum. The angular momentum
conservation can be switched on or off in each variant of
MPC and DPD.

In addition to previous MPC algorithms, we have intro-
duced here MPC-SR+a. This algorithm has to be used with
some caution, because compared to other MPC+a tech-
niques, it does not give a uniform radial distribution func-
tion. However, the deviations are small for sufficiently large
density and not too small time step.

We have derived analytical expressions for the viscosity �
and the self-diffusion constant D of various MPC and DPD
methods. The theoretical results show very good agreement
with numerical results. Since we provide very general ex-

pressions of � and D for MPC, the transport coefficients of
any new version of MPC can now be obtained very easily by
calculating the two correlation factors A and B �compare
Table I�. Many similarities between MPC and DPD are seen
in the derivation of � and D and the relation between the −a
and +a versions. We believe that these similarities apply gen-
erally for particle-based hydrodynamics methods.
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